CD4+ subsets

ADAPTIVE IMMUNE RESPONSE

Stefania.mardente@uniroma1.it Dipartimento di Medicina Sperimentale

Different subsets of CD4+ cells

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

SupraMolecular Activation Cluster

Molecules in Immune synapses are: TCR complex (TCR AND CD3), co-receptor CD4 or CD8, co-activator receptors CD28, integrins.

The central part of the synapses is called central SMAC, the distance beetwen APC and T cell is 15nm. At the sides where integrins are, the distance is 40nm.

SECOND SIGNAL

Helper T cells modulate cell functions through cytokine secretion and CD40-CD40L interaction

DCs can sense microbes directly but also indirectly (through immune cells and tissue cells), and integrate this information to orchestrate the response

Helper T cell subgroups and effector functions

Different subpopulations of CD4+ T cells

Figure 4 | Different subpopulations of CD4⁺ T cells. Four main populations of CD4⁺ T cells are shown. Regulatory

IL-12 is the major TH1-polarizing cytokine

Transcription factors

TH1 SUBSET

Intracellular bacteria

Facultative

- Legionella pneumophila: It prefers intracellular environment of macrophages for growth. Legionella induce its own uptake and blocks lysosomal fusion by undefined mechanism.
- Listeria monocyotogenes: Listeria quickly escapes the phagosome into the cytoplasm **before** phagosome-lysosome fusion.
- **Salmonella** : Very resistant to intracellular killing by phagocytic cells.
- Invasive Escherichia coli
- Neisseria , Brucella, Shigella

Obligate

- Mycobacterium leprae
- *Mycobacterium tuberculosis*:inhibits phagosome-lysosome fusion.
- **Coxiella burnetti:** metabolic activity greatly increased in the acidic environment of the phagolysosome.
- Ricekettsia, Toxoplasma, Cryptosporidium, Plasmodium, Leishmania, Babesia and Trypanosoma,
- **Pneumocystis jiroveci** is an obligate intracellular fungi.
- Chlamydiae

Genetic defects of the IL-12/IFN γ axis lead to susceptibility to some intracellular bacteria (mycobacteria, salmonella)

A selective immunodeficiency!

The IFN γ (IL-12 amplification loop

Functions of IFN γ

IFN-y immunoregulatory functions

TH2 SUBSET

The main functions of IL-4

IL12,IL2,IL4 and IFN γ in brief

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Macrophages

TH17 SUBSET

Extracellular bacteria

- Predominantly extracellular bacteria are:
- 1. Bacillus anthracis
 - 2. Enterotoxigenic Escherichia coli
 - 3. Haemophilus influenzae
 - 4. Mycoplasma
 - 5. Pseudomonas aeruginosa
 - 6. Staphylococcus aureus
 - 7. Streptococcus pyogenes
 - 8. Vibrio cholerae

Functions of TH17-derived cytokines

Effector Th cell lineage and pathogen class

Regulatory CD4+ T cells suppress effector T cell activation

FATE OF EFFECTOR T LYMPHOCYTES AFTER CELLULAR RESPONSE

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Mutations in FOXP3 gene

Mutations in Fox P3 gene cause IPEX syndrome (autoimmune disregulation and polyendocrine pathologies)

• Foxp3 positive cells express CD25 (IL2-r) at low or intermediate affinity

Reciprocal regulation of FoxP3+ T cells and Th17 cells by retinoic acid.

IL-2 and TGF- β 1 promote the generation of FoxP3+ T cells from naïve T cells.

IL-6 and TGF- β 1 promote the generation of Th17 cells.

IL-2 and the cytokines that promote T cell polarization into Th1 or Th2 cells (IL-4, IL-12, IFN- γ) suppress the generation of Th17 cells

IL-6 and IL-21 (pro-Th17 cells) suppress the generation of FoxP3+ Tcells.

Importantly, retinoic acid suppresses the generation of Th17 cells but promotes the induction of FoxP3+ T cells.

Trends in Immunology

Review

Retinoic Acid and Immune Homeostasis: A Balancing Act Martje N. Erkelens¹ and Reina E. Mebius^{1,*}

Trends in mmunology

Balancing effector and regulatory T cell responses

Regulatory T cells control immune responsiveness in vivo

Benefits:

- T-cell homeostasis
- prevents autoimmune disease
- tolerance after transplantation
- prevents GVHD
- prevents allergy
- prevents hypersensitivity

Detrimental effects:

- · down-regulation of tumour immunity
- · down-regulation of immunity to infection

T cell response

Memory T Lymphocytes

- LONG TERM MEMORY
- BNIP1 (transcription factor)
- CCR7 Home in nodes
- CD45RO+
- IL 7R
- CD4+ Respond to IL7
- CD8+ respond to IL7 and IL15

- EFFECTOR MEMORY
- CD45 RO+
- CCR7 negative: home in tissues/mucosas
- Can be polarized TH1,TH2 and TH17 if commitment to become memory happened after polarization.

Immunological memory

Memory CD4 T cells protect the host in a number of ways

CD4+ subsets

Summary

Routes of lymphocyte trafficking

What does regulate lymphocyte trafficking?

Naive lymphocytes recirculate between blood and peripheral lymphoid organs only

Activated lymphocytes traffic also to tissues

Should I stay or should I go?

Should I stay or should I go?

Distinct CD4+ T cell subsets express a different pattern of chemokine receptors....

Chemoattractants, cytokines and leukocyte types

Inflammatory Disease	Infiltrate	Chemokine	Chemokine receptor antagonists in development		
Acute respiratory distress syndrome	Neutrophil	Interleukin-8; GRO-α, -β, -γ; ENA-78	Chemokine		
Asthma Bacterial pneumonia	Eosinophil, T cell, monocyte, basophil	MCP-1, -4; MIP-1α; eotaxin; RANTES	Receptor	Clinical Indication	
			CCR1	Rheumatoid arthritis	
	Neutrophil	Interleukin-8, ENA-78 IP-10		Multiple sclerosis	
			CCR2	Rheumatoid arthritis	
Sarcoidosis	T cell, monocyte			Type 2 diabetes	
				Multiple sclerosis	
Glomerulonephritis	Monocyte, T cell, neutrophil	MCP-1, RANTES, IP-10		Multiple selerosis	
			CCR3	Allergic rhinitis and asthma	
Rheumatoid arthritis	Monocyte, neutrophil	MIP-1α, MCP-1, interleukin-8, ENA-78			
			CCR5	HIV	
		MIP-1β	CCR9	Inflammatory bowel disease	
	T cell, monocyte	MCP-1, -4; IP-10	CXCR1, CXCR2	Chronic obstructive pulmonary disease	C
			CXCR3	Psoriasis	
Atherosclerosis			CXCR4	Stem-cell mobilization	C
Inflammatory bowel disease	Monocyte, neutrophil, T cell, eosinophil	MCP-1, MIP-1α, eotaxin, IP-10, interleukin-8			0
					C
	T cell,	MCP-1,			ŀ
	neutrophil	IP-10, MIG,			t
Basiliaria		GRO-β, interleukin-8			F
Psoriasis	Neutrophil,	Interleukin-8;			a
Bacterial meningitis Viral meningitis	monocyte	GRO-α; MCP-1;			
		MIP-1α, -1β			_
	T cell, monocyte	MCP-1, IP-10			*
			1		

Role of chemokines and vasculature in various inflammatory diseases

Chronic inflammatory diseases associated with HEV-like vasculature

Disease	Affected organ	Plump endothelium	Mucin-like CAMs on endothelium*			
Crohn's disease	Gut	+	+			
Diabetes mellitus	Pancreas	+	+			
Graves' disease	Thyroid	+	+			
Hashimoto's thyroiditis	Thyroid	+	+			
Rheumatoid arthritis	Synovium	+	+			
Ulcerative colitis	Gut	+	+			
*Includes GlyCAM-1, MAdCAM-1, and CD34.						

Figure 3. Role of Chemokines in Various Inflammatory Diseases. Inflammatory diseases are characterized by the selective accumulation of leukocyte subgroups, a process controlled by the